Arithmetic rigidity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Rigidity and Units in Group Rings

For any finite group G the group U(Z[G]) of units in the integral group ring Z[G] is an arithmetic group in a reductive algebraic group, namely the Zariski closure of SL1(Q[G]). In particular, the isomorphism type of the Q-algebra Q[G] determines the commensurability class of U(Z[G]); we show that, to a large extent, the converse is true. In fact, subject to a certain restriction on the Q-repre...

متن کامل

Quasi-isometric rigidity of non-cocompact S-arithmetic lattices

Throughout we let K be an algebraic number field, VK the set of all inequivalent valuations on K, and V ∞ K ⊆ VK the subset of archimedean valuations. We will use S to denote a finite subset of VK that contains V ∞ K , and we write the corresponding ring of S-integers in K as OS. In this paper, G will always be a connected non-commutative absolutely simple algebraic K-group. Any group of the fo...

متن کامل

Quasi-isometric Rigidity of Higher Rank S-arithmetic Lattices

We show that S-arithmetic lattices in semisimple Lie groups with no rank one factors are quasi-isometrically rigid.

متن کامل

Commensurated Subgroups of Arithmetic Groups, Totally Disconnected Groups and Adelic Rigidity

The Margulis-Zimmer conjecture. The subject of this paper is a well known question advertised by Gregory Margulis and Robert Zimmer since the late 1970’s, which seeks refinement of the celebrated Normal Subgroup Theorem of Margulis (hereafter abbreviated NST). Although Margulis’ NST is stated and proved in the context of (higher rank) irreducible lattices in products of simple algebraic groups ...

متن کامل

ARITHMETIC-BASED FUZZY CONTROL

Fuzzy control is one of the most important parts of fuzzy theory for which several approaches exist. Mamdani uses $alpha$-cuts and builds the union of the membership functions which is called the aggregated consequence function. The resulting function is the starting point of the defuzzification process. In this article, we define a more natural way to calculate the aggregated consequence funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2010

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-2010-10373-8